
Angular Performance
Your App at the Speed of Light

Christian Liebel
@christianliebel

Consultant

Hello, it’s me.

Angular Performance
Your App at the Speed of Light

Christian Liebel

Follow me:
@christianliebel

Blog:
christianliebel.com

Email:
christian.liebel

@thinktecture.com

Cross-Platform &
Serverless

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

Don’t over-optimize.

Angular Performance
Your App at the Speed of Light

First Rule

In general: Reduce required computations during runtime (calculations,
painting, layouting)

Not covered: CSS/JS tweaks, performance metrics, …

Today: Angular-specific performance topics

Angular Performance
Your App at the Speed of Light

Runtime Performance

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

Hi Angular!

Basics

// app.component.html
<h1>Hi {{ title }}!</h1>

// app.component.ts
@Component({ /* … */ })
export class AppComponent {

title = 'Angular';
}

Angular Performance
Your App at the Speed of Light

Change Detection

Basics

// app.component.html
<h1>Hi {{ title }}!</h1>

<button (click)="update()">
Update

</button>

// app.component.ts
@Component({ /* … */ })
export class AppComponent {

title = 'Angular';

update() {
this.title = 'Foo';

}
}

Angular Performance
Your App at the Speed of Light

Change Detection

Hi Foo!Hi Angular!
Update

Basics

Change detection…
- is the magical part of Angular that makes data binding “just work”
- is a very handy feature that helps a lot, but it can also work against

you
- is strongly related to Angular application performance

Angular Performance
Your App at the Speed of Light

Change Detection

Component Tree

AppComponent

NavComponent ContentComponent

ListComponent

Angular Performance
Your App at the Speed of Light

Change Detection

Change Detector Tree

AppComponent

NavComponent ContentComponent

ListComponent

Angular Performance
Your App at the Speed of Light

Change Detection

AppComponent CD

NavComponent CD ContentComponent
CD

ListComponent CD

CHANGE

Change Detector

detectChanges()
Called when an event has occured and bindings should be checked

Angular Performance
Your App at the Speed of Light

Change Detection

this.title = 'Foo'; <h1>Hi {{ title }}!</h1>

Per default, each change in your application leads to…
- A single CD cycle
- From top to bottom (all components)
- Unidirectional (no cycles allowed)

Angular Performance
Your App at the Speed of Light

Change Detection

DEMO

First findings

Reduce duration of a change detection cycle
- Reduce amount of bindings (e.g. grids: virtual scrolling via CDK)
- Avoid binding to (computationally intensive) getters or functions

Keep CD cycle < 16 ms!

Angular Performance
Your App at the Speed of Light

Change Detection

Profiling

// main.ts
platformBrowserDynamic().bootstrapModule(AppModule).then(module =>
enableDebugTools(module.injector.get(ApplicationRef).components[0]));

Execute ng.profiler.timeChangeDetection() to measure the duration
of a change detection run (500ms or 5 change detection cycles)

Angular Performance
Your App at the Speed of Light

Change Detection

DEMO

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

How to detect a change?

AppComponent

NavComponent ContentComponent

ListComponent

Angular Performance
Your App at the Speed of Light

Zone.js

AppComponent CD

NavComponent CD ContentComponent
CD

ListComponent CD

CHANGE

A look at Angular’s dependencies

"dependencies": {
"@angular/common": "~7.2.0",

"core-js": "^2.5.4",
"rxjs": "~6.3.3",
"zone.js": "~0.8.26"

},

Zone.js

Your App at the Speed of Light
Angular Performance

A Meta-Monkey Patch

Zone.js

setTimeout
setInterval

geolocation.getCurrentPosition
XMLHttpRequest

PromiseRejectionEvent
requestAnimationFrame

click
focus

mousemove
addEventListener

Your App at the Speed of Light
Angular Performance

Execution Context

Debugging
Pending asynchronous tasks are known

Profiling
Measuring performance (Google Web Tracing Framework)

Mocking/Testing
Hooks beforeTask, …

Zone.js

Your App at the Speed of Light
Angular Performance

NgZone

Angular Performance
Your App at the Speed of Light

Zone.js

current (global) zone

NgZone

Angular boot

NgZone

NgZone catches asynchronous
operations from the Angular app
When no tasks are remaining for
the current VM turn, the NgZone
will trigger a change detection
cycle (tick)

Angular Performance
Your App at the Speed of Light

Zone.js

NgZone

se
tT

im
eo

ut

se
tI

nt
er

va
l

on
cl

ic
k

D
etect cha

ng
es

D
etect cha

ng
es

D
etect cha

ng
es

Change Detection Trigger

https://github.com/angular/angular/blob/master/packages/core/src/application_ref.ts

Angular Performance
Your App at the Speed of Light

Zone.js

NgZone.onMicrotaskEmpty ApplicationRef.tick()

view1.detectChanges()

view2.detectChanges()

viewN.detectChanges()

https://github.com/angular/angular/blob/master/packages/core/src/application_ref.ts

Common Pitfalls

Long CD cycles in combination with high-frequency events
- mousemove
- scroll
- requestAnimationFrame
- setInterval with short intervals (clocks!)

Angular Performance
Your App at the Speed of Light

Zone.js

DEMO

NgZone

Zone.js

current (global) zone

NgZone

mo
us

em
ov

e

D
etect cha

ng
es mo

us
em

ov
e

D
etect cha

ng
es mo

us
em

ov
e

D
etect cha

ng
es mo

us
em

ov
e

D
etect cha

ng
es

Your App at the Speed of Light
Angular Performance

NgZone Opt-Out

constructor (ngZone: NgZone) {
ngZone.runOutsideAngular(() => {

// runs outside Angular zone, for performance-critical code

ngZone.run(() => {
// runs inside Angular zone, for updating view afterwards

});
});

}

Zone.js

Your App at the Speed of Light
Angular Performance

!
View and model can
get out of sync!

NgZone

Zone.js

current (global) zone

NgZone

mo
us

em
ov

e

mo
us

em
ov

e

mo
us

em
ov

e

mo
us

em
ov

e

Your App at the Speed of Light
Angular Performance

DEMO

Disable Patches (polyfills.ts)

(window as any).__Zone_disable_requestAnimationFrame = true;
// disable patch requestAnimationFrame

(window as any).__Zone_disable_on_property = true;
// disable patch onProperty such as onclick

(window as any).__zone_symbol__BLACK_LISTED_EVENTS = ['scroll',
'mousemove'];
// disable patch specified eventNames

Angular Performance
Your App at the Speed of Light

Zone.js

!
View and model can
get out of sync!

Disable Zone (= disable async change detection!)

platformBrowserDynamic().bootstrapModule(AppModule, {
ngZone: 'noop'

});

constructor(applicationRef: ApplicationRef) {
applicationRef.tick(); // trigger CD yourself

}

Angular Performance
Your App at the Speed of Light

Zone.js

!
View and model can
get out of sync!

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

Overview

Default
Uses Zone.js for detecting
changes and updates bindings

OnPush
Restricts change detection to
changes of @Input parameters

Angular Performance
Your App at the Speed of Light

Change Detection Strategies

AppComponent CD

NavComponent CD ContentComponent
CD

ListComponent CD

AppComponent CD

NavComponent CD ContentComponent
CD

ListComponent CD

OnPush

OnPush

<my-component [foo]="bar">
</my-component>

@Component({
selector: 'my-component',
template: '{{ foo }}',
changeDetection:
ChangeDetectionStrategy.OnPush

})
export class MyComponent {
@Input()
public foo: string;

}

Change detection only reacts to
changes of @Input parameters
Angular compares the values
passed to an @Input parameter
(newValue === oldValue).
If you are passing objects, make
sure to pass in new instances!

Angular Performance
Your App at the Speed of Light

Change Detection Strategies

!
View and model can
get out of sync!

DEMO

OnPush & Detecting Changes

What to do if a component changes unrelated to an @Input parameter?

constructor(private dataService: DataService) {}

ngOnInit() {
this.dataService.updates$

.subscribe(newData => this.data = newData); // no update!
}

Angular Performance
Your App at the Speed of Light

Change Detector

ChangeDetectorRef

constructor(cdRef: ChangeDetectorRef) {}

A reference to the ChangeDetector of your component
- detectChanges()
- markForCheck()
- detach()
- checkNoChanges()
- reattach()

Angular Performance
Your App at the Speed of Light

Change Detector

markForCheck()

Explicitly marks a component as dirty/changed (when using OnPush)

Angular Performance
Your App at the Speed of Light

Change Detector

AppComponent CD

NavComponent CD ContentComponent
CD

ListComponent CD

DIRTY

AppComponent CD

NavComponent CD ContentComponent
CD

ListComponent CD

OnPush

markForCheck()

constructor(private dataService: DataService,
private cdRef: ChangeDetectorRef) {}

ngOnInit() {
this.dataService.updates$.subscribe(newData => {

this.data = newData;
this.cdRef.markForCheck();

});
}

Angular Performance
Your App at the Speed of Light

Change Detector

Detaching Components

changeDetector.detach(); changeDetector.reattach();

Angular Performance
Your App at the Speed of Light

Change Detector

AppComponent CD

NavComponent CD ContentComponent
CD

ListComponent CD

AppComponent CD

NavComponent CD ContentComponent
CD

ListComponent CD

!
View and model can
get out of sync!

Local Change Detection

constructor(cdRef: ChangeDetectorRef) {
cdRef.detach(); // detaches this view from the CD tree
// cdRef.detectChanges(); // detect this view & children
// cdRef.reattach();

}

Angular Performance
Your App at the Speed of Light

Change Detector

Findings

Reduce amount of change detection cycles
- Disable Zone.js (not a good idea in most cases)
- Opt-out of NgZone (for operations that should not affect bindings)
- Disable Zone.js patches (in case you can’t opt-out, e.g. 3rd party libs)
- ChangeDetectionStrategy.OnPush (good default, but be careful)
- Local change detection via ChangeDetectorRef (for the few

components that do not have to respond to changes from outside)

Angular Performance
Your App at the Speed of Light

Change Detector

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

Overview

Takes observables or promises

{{ data$ | async }}

Waits for the observable to emit/promise to resolve and then displays
the value

Angular Performance
Your App at the Speed of Light

Async Pipe

Advantages

For observables:
- Async Pipe subscribes for you
- Async Pipe takes care of unsubscribing from the observable
- Async Pipe calls markForCheck for each update – perfect match for

OnPush!

https://github.com/angular/angular/blob/master/packages/common/src/pipes/async_pipe.ts

Angular Performance
Your App at the Speed of Light

Async Pipe

https://github.com/angular/angular/blob/master/packages/common/src/pipes/async_pipe.ts

Simplifying OnPush

// component.ts
data$: Observable<string>;
constructor(dataService: DataService) {

this.data$ = this.dataService.updates$;
}

// component.html
{{ data$ | async }}

Angular Performance
Your App at the Speed of Light

Async Pipe

Not covered:
- HTTP/2, compression, …

Today:
- Reduce initial load (size & computation)
- Reduce perceived loading time
- Prevent downloading the same resource again

Angular Performance
Your App at the Speed of Light

Load Time Performance

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

The Problem

Angular’s development directory
structure is hard to
• deploy
• serve
• cache
• …

Lots of files, lots of requests
Angular and its dependencies are large
in size, apps use only a fragment

Bundling

Your App at the Speed of Light
Angular Performance

The Problem

Just-in-Time compilation (JiT)
- Slow, client-side rendering
-Compiler is 1.2 MB large in size
- Template errors detected at runtime only
- Potentially dangerous (injection attacks)

Bundling

Your App at the Speed of Light
Angular Performance

The Problem

Goal: Angular app
-with all components pre-compiled
- combined in a single (or few) file(s)
-without redundant/unused code
- uglified, compressed

Bundling

Your App at the Speed of Light
Angular Performance

JiT Compilation

Bundling

Component

@Component({ … })
class UserComponent {

user = { name: 'Chris' };
}

Template

<div>hello {{ user.name }}</div>

Server Client

Component

@Component({ … })
class UserComponent {

user = { name: 'Chris' };
}

Template

<div>hello {{ user.name }}</div>

View Class

var v = this.comp.user.name;

Your App at the Speed of Light
Angular Performance

AoT Compilation

Bundling

Component

@Component({ … })
class UserComponent {

user = { name: 'Chris' };
}

Template

<div>hello {{ user.name }}</div>

Server Client

Component

@Component({ … })
class UserComponent {

user = { name: 'Chris' };
}

View Class

var v = this.comp.user.name;

Template

<div>hello {{ user.name }}</div>

View Class

var v = this.comp.user.name;

Your App at the Speed of Light
Angular Performance

ng build --prod

AoT
+

Tree Shaking: “walks the dependency graph, top to bottom, and shakes
out unused code like dead needles in a Christmas tree.”

+
Build Optimizer: applies Angular optimizations to JavaScript code

Bundling

Your App at the Speed of Light
Angular Performance

A Simple Demo App

Dev build: 4.2 MB (without source maps)
AoT build: 2.8 MB (without source maps)
AoT+TreeShake: 502K
AoT+TreeShake+BuildOptimizer: 379K (106K gzipped)

Bundling

Your App at the Speed of Light
Angular Performance

Differential Loading

Detect the platform and only deliver files required for this platform
First version introduced with Angular CLI 7.3.0
core.js Polyfills required for ES5 browsers are only delivered to ES5
browsers
Saves another 56+ K for modern browsers

Angular Performance
Your App at the Speed of Light

Bundling

Differential Loading

// index.html
<!doctype html>
<html lang="en">
<script type="text/javascript" src="runtime.js"></script>
<script type="text/javascript" src="es2015-polyfills.js"
nomodule></script>
<script type="text/javascript" src="polyfills.js"></script>
<script type="text/javascript" src="styles.js"></script>
<script type="text/javascript" src="vendor.js"></script>
<script type="text/javascript" src="main.js"></script></body>
</html>

Angular Performance
Your App at the Speed of Light

Bundling

Differential Loading

- Differential loading support comes to all files
- Angular CLI 8+ can produce ES5 + ES2015 bundles of your application
- ES2015 files (smaller footprint) will be delivered to modern browsers

only

Angular Performance
Your App at the Speed of Light

Bundling

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

Overview

Angular router supports lazy loading components transparently
Lazy loaded components are not delivered to/loaded by the client on
boot, but on purpose
Reduces load & perceived loading time

Lazy Loading

Your App at the Speed of Light
Angular Performance

Overview

const ROUTES: Routes = [{
path: 'admin',
loadChildren: () => import('./lazy/lazy.module')

.then(m => m.LazyModule)
}];

Lazy Loading

Your App at the Speed of Light
Angular Performance

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

Configuring Lazy Loading

NoPreloading
- does not preload any route by

default
- advantage: low size footprint
- disadvantage: takes some

time after clicking a link to the
lazy-loaded module, not offline
capable

PreloadAllModules
- automatically preloads all

modules after the application
has launched (still better
loading time!)

- advantage: lazy-loaded
modules now load instant (also
on the first click), offline
capable

- disadvantage: higher footprint

Angular Performance
Your App at the Speed of Light

Preloading Strategies

Configuring Lazy Loading

@NgModule({
imports: [RouterModule.forRoot(routes, {

preloadingStrategy: PreloadAllModules,
})],
exports: [RouterModule]

})
export class AppRoutingModule { }

Angular Performance
Your App at the Speed of Light

Preloading Strategies

Custom Strategy

preload(route: Route, fn: () => Observable<any>): Observable<any> {
// decide based on route (or other external information)
// call fn to preload the module
// otherwise, return of(null)

}

https://github.com/angular/angular/blob/8.1.x/packages/router/src/router_preloader.ts#L41

Angular Performance
Your App at the Speed of Light

Preloading Strategies

https://github.com/angular/angular/blob/8.1.x/packages/router/src/router_preloader.ts

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

Principle

Angular Universal
Pre-render the website using the same sources that are served
Once Angular kicks in, the view is replaced with the client-rendered one
Supports Node.js (Express) & ASP.NET Core

Server-Side Rendering

Your App at the Speed of Light
Angular Performance

Principle

Server-Side Rendering

Component

@Component({ … })
class UserComponent {

user = { name: 'Chris' };
}

Template

<div>hello {{ user.name }}</div>

Server Client

Component

@Component({ … })
class UserComponent {

user = { name: 'Chris' };
}

View Class

var v = this.comp.user.name;

Template

<div>hello {{ user.name }}</div>

View Class

var v = this.comp.user.name;

index.html

<!DOCTYPE html><head>…

Your App at the Speed of Light
Angular Performance

Purpose

Search Engine Optimization
Preview Links (Social Media)
Graceful Degradation
Reduce Perceived Loading Time/Quick First Contentful Paint (FCP)
Improve Performance for Mobile/Low-Powered Devices

Server-Side Rendering

Your App at the Speed of Light
Angular Performance

Server
Rendering

Asset
Downloads Client Init Client Data Paint

The Web App Gap

Server-Side Rendering

Your App at the Speed of Light
Angular Performance

Preboot.js

Filling the Web App Gap
Records interactions of the user on the server-rendered part
Replays the interaction once Angular kicks in on the client side

Provided by the Angular team
Open source
https://github.com/angular/preboot

Server-Side Rendering

Your App at the Speed of Light
Angular Performance

https://github.com/angular/preboot

Server
Rendering

Asset
Downloads Client Init Client Data Paint

Preboot.js & The Web App Gap

Angular Performance
Your App at the Speed of Light

Server-Side Rendering

Record Replay

Runtime Performance

Bundling Lazy
Loading

Preloading
Strategies

Server-Side
Rendering

Service
Worker

Angular Performance
Your App at the Speed of Light

Agenda

Change
Detection

Basics

Zone.js &
NgZone

Change
Detection
Strategies

Change
Detector Async Pipe

Load Time Performance

Idea: Never load the same resource twice
Download resources once and store them in a local cache
The next time the user wants to open the application, load the contents
from there
Makes your application sources offline-capable
Significantly improves loading time

Angular Performance
Your App at the Speed of Light

Service Worker

Architecture
Service Worker

Service
Worker

Internet
Website
HTML/JS

Cache

fetch

Your App at the Speed of Light
Angular Performance

@angular/service-worker

Service Worker implementation provided by the Angular team
Features

-Caching
-Offline Availability
- Push Notifications

Service Worker is generated by the CLI (prod builds only)

ng add @angular/pwa

Service Worker

Your App at the Speed of Light
Angular Performance

Runtime Performance

1. Don’t over-optimize

2. Reduce duration of a change detection cycle
- Reduce amount of bindings
- Avoid binding to (computationally intensive) getters or functions

3. Reduce amount of change detection cycles
- Disable zone
- NgZone
- Zone.js patches
- ChangeDetectorRef
- ChangeDetectionStrategy

Angular Performance
Your App at the Speed of Light

Cheat Sheet

Thank you
for your kind attention!

Christian Liebel
@christianliebel
christian.liebel@thinktecture.com

