
RxJS - Advanced Patterns:
Operating Heavily Dynamic UIs

@Michael_Hladky

Agenda

- The Problem
- Reactive Micro Architecture
- Event Sourcing, CQRS and their relation
- Orchestrate rendering and UI interaction
- Where and when to optimize performance

Angular by heart and code
Development, Workshops, Community

Michael Hladky

@Michael_Hladky

The Problem

@Michael_Hladky

The Problem

- State

- Background processes

- User interactions

@Michael_Hladky

Showcase Problem

{ }

@Michael_Hladky

Micro Architecture

@Michael_Hladky

Divide code into 6 main groups

Architecture Sections C O S HE

Constats

Base Observables

Side Effects

Subscription

Helper

Structure code with this groups makes code
- maintainable
- extensible
- easy to orientate

Custom Operators

P

@Michael_Hladky

Constants C O S HE

Static data i.e. JSON files
Constants i.e. interval rate
UI elements i.e. Elem. ref. to button

P

TS In some cases a you will extract these things
into a separate file.

{ }

@Michael_Hladky

Base Observables C O S HE

Source Observables

State Observables

Intermediate Observables

P

Intermediate observables are a combination of state
and interaction observables.

Source observables are the purest observables in you
architecture. Here we separate into state and interaction.

State observables represent the state of your
application. In most casts it is in a separate file.

Interaction
Observables

Interaction observables are mostly UI related.
(i.e. btn click) Could be abstracted into a component.

@Michael_Hladky

Side Effects C O S HE

UI Updates

UI Interaction

Background Processes
All actions triggered from automated processes.
(i.e. intervals, http, web-socket msg’s)

P

UI Input are all observables that trigger i.e. a
renderView() function.

UI Outputs are all events from user interaction that
trigger something else.

@Michael_Hladky

Subscriptions C O S HE P

Separate subscriptions into inputs and outputs.

Subscription handling should be done declarative.
i.e. takeUntil

In best case we maintain only a single subscription.

Some frameworks even take over subscription
handling for us.

@Michael_Hladky

Helper C O S HE P

TS In many cases a you will extract these functions
into a separate file.

Functions that perform common, often reused logic.

@Michael_Hladky

Custom Operators C O S HE

Creation methods

Operators

P

Operators are all functions that take an
observable and return an observable.

In most cases a you will extract these
functions
into separate files.

Creation methods are all functions that
return a new observable.

TS
TS

TS

@Michael_Hladky

Implement Micro Architecture

{ }

@Michael_Hladky

Event Sourcing

“
”Martin Fowler

Event Sourcing:
Capture all changes to an

application state as a sequence
of events.

@Michael_Hladky

Event Sourcing

Modeling state changes as an immutable sequence of events.

Every event describes it’s changed to the state.

add

edit

delete

upsert

toggle

halfen

hide

delete

@Michael_Hladky

Event Sourcing

derive (query) it from the
immutable sequence of changes

STATE STATE

[]Instead of mutating the state,

@Michael_Hladky

Command Query Responsibility
Segregation

(CQRS)

CQRS provides separation of concerns for reading and
writing.

“
”Bertrand Meyer

CQRS:
Every method should either be a

command, or a query,
but not both.

@Michael_Hladky

CQRS

Command Query

Responsibility Segregation

STATEedit

add

delete

Separating an application
responsibilities into
two parts:

● The query side
which reads state

● The command side
witch update state

@Michael_Hladky

[]
CQRS

Command Query

 Responsibility Segregation

Rel. DB Oo. DB
Enables a combination of
i.e:

● normalization
(faster writes)

● denormalization
(faster reads)

[]

Command Query

 Responsibility Segregation

@Michael_Hladky

CQRS

Command Query

 Responsibility Segregation

Write Read

Let’s apply it to the
frontend and by

separating writing and
reading strictly

@Michael_Hladky

Separate
State Management and Side Effects

{ }

@Michael_Hladky

Orchestrate UI
interaction and rendering

@Michael_Hladky

Orchestrate rendering and UI interaction

- First render
- Than interaction

@Michael_Hladky

Where and when
to optimize performance

@Michael_Hladky

Where and when to optimize performance

- Do it at the end of your task
- Before trigger a render side effect
- Use the AnimationFrameScheduler
- Sample frequent commands
- debounce typing
- Use standard operators to work with arrays

Thanks for your time
I’m Michael,

If you have any questions
 just ping me!

Michael Hladky

