RxJS - Advanced Patterns:
Operating Heavily Dynamic Uls




Agenda

- The Problem

- Reactive Micro Architecture

- Event Sourcing, CQRS and their relation
- Orchestrate rendering and Ul interaction

- Where and when to optimize performance
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Angular by heart and code

Development, Workshops, Community
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The Problem

@Michael_Hladky
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Showcase Problem
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Micro Architecture
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Architecture Sections

Constats

Base Observables

Side Effects

Subscription

Helper

Custom Operators

Divide code into 6 main groups

Structure code with this groups makes code

- maintainable
- extensible
- easy to orientate
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Constants

Static data i.e. JSON files
Constants i.e. interval rate
Ul elements i.e. Elem. ref. to button

In some cases a you will extract these things
into a separate file.
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Base Observables ©

Source Observables

Interaction
Observables

State Observables

)

Intermediate Observables

2

Source observables are the purest observables in you
architecture. Here we separate into state and interaction.

Interaction observables are mostly Ul related.
(i.e. btn click) Could be abstracted into a component.

State observables represent the state of your
application. In most casts it is in a separate file.

Intermediate observables are a combination of state
and interaction observables.
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Side Effects

Ul Updates

Ul Interaction

Background Processes

m

r—

Ul Input are all observables that trigger i.e. a
renderView() function.

Ul Outputs are all events from user interaction that
trigger something else.

All actions triggered from automated processes.
(i.e. intervals, http, web-socket msg’s)
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Subscriptions

merge( [
renderValue$,
updateState$

1)

.pipe(
takeUntil(trigger$)

)

.subscribe();

{{ state$ | async }}

Separate subscriptions into inputs and outputs.

Subscription handling should be done declarative.
l.e. takeUntil

In best case we maintain only a single subscription.

Some frameworks even take over subscription
handling for us.
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Helper

Functions that perform common, often reused logic.

In many cases a you will extract these functions
into a separate file.
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Custom Operators

Creation methods

Operators

Creation methods are all functions that
return a new observable.

Operators are all functions that take an
observable and return an observable.

In most cases a you will extract these
functions
into separate files.
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Implement Micro Architecture
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Event Sourcing
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€6  Event Sourcing:
Capture all changes to an
application state as a sequence

of events. 99
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Event Sourcing

Modeling state changes as an immutable sequence of events.

Every event describes it's changed to the state.

add

delete

edit
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Event Sourcing

Instead of mutating the state,

derive (query) it from the
immutable sequence of changes
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Command Query Responsibility
Segregation
(CQRS)

CQRS provides separation of concerns for reading and
writing.
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66 CORS:
Every method should either be a

command, or a query),
but not both. 29
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CQRS

Separating an application
responsibilities into
two parts:

e The command side
witch update state

e The query side
which reads state
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CQRS

Enables a combination of
l.e:

e normalization
(faster writes)

e denormalization
(faster reads)
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CQRS

Let's apply it to the
frontend and by

separating writing and Write Read

reading strictly
Responsibility Segregation

'
O

Command Query
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Separate
State Management and Side Effects
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Orchestrate Ul
interaction and rendering
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Orchestrate rendering and Ul interaction

- First render
- Than interaction
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Where and when
to optimize performance
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Where and when to optimize performance

- Do it at the end of your task

- Before trigger a render side effect

- Use the AnimationFrameScheduler

- Sample frequent commands

- debounce typing

- Use standard operators to work with arrays
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Thanks for your time

I’m Michael,
If you have any questions
just ping me!
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