RxJS - Advanced Patterns:
Operating Heavily Dynamic Uls

Agenda

- The Problem

- Reactive Micro Architecture

- Event Sourcing, CQRS and their relation
- Orchestrate rendering and Ul interaction

- Where and when to optimize performance

YW @Michael_Hladky

Angular by heart and code

Development, Workshops, Community

G

Michael Hladky

The Problem

@Michael_Hladky

The Problem

. State @

- Background processes Q@

Star L — - User interactions
BT -

Tick Speed 200 Count Diff 1

@Michael_Hladky

{1

Showcase Problem

@Michael_Hladky

Micro Architecture

@Michael_Hladky

Architecture Sections

Constats

Base Observables

Side Effects

Subscription

Helper

Custom Operators

Divide code into 6 main groups

Structure code with this groups makes code

- maintainable
- extensible
- easy to orientate

3y @Michael_Hladky

Constants

Static data i.e. JSON files
Constants i.e. interval rate
Ul elements i.e. Elem. ref. to button

In some cases a you will extract these things
into a separate file.

@Michael_Hladky

Base Observables ©

Source Observables

Interaction
Observables

State Observables

)

Intermediate Observables

2

Source observables are the purest observables in you
architecture. Here we separate into state and interaction.

Interaction observables are mostly Ul related.
(i.e. btn click) Could be abstracted into a component.

State observables represent the state of your
application. In most casts it is in a separate file.

Intermediate observables are a combination of state
and interaction observables.

@Michael_Hladky

Side Effects

Ul Updates

Ul Interaction

Background Processes

m

r—

Ul Input are all observables that trigger i.e. a
renderView() function.

Ul Outputs are all events from user interaction that
trigger something else.

All actions triggered from automated processes.
(i.e. intervals, http, web-socket msg’s)

@Michael_Hladky

Subscriptions

merge([
renderValue$,
updateState$

1)

.pipe(
takeUntil(trigger$)

)

.subscribe();

{{ state$ | async }}

Separate subscriptions into inputs and outputs.

Subscription handling should be done declarative.
l.e. takeUntil

In best case we maintain only a single subscription.

Some frameworks even take over subscription
handling for us.

@Michael_Hladky

Helper

Functions that perform common, often reused logic.

In many cases a you will extract these functions
into a separate file.

@Michael_Hladky

Custom Operators

Creation methods

Operators

Creation methods are all functions that
return a new observable.

Operators are all functions that take an
observable and return an observable.

In most cases a you will extract these
functions
into separate files.

@Michael_Hladky

{1

Implement Micro Architecture

@Michael_Hladky

Event Sourcing

@Michael_Hladky

€6 Event Sourcing:
Capture all changes to an
application state as a sequence

of events. 99

Martin Fowler | $&&

Event Sourcing

Modeling state changes as an immutable sequence of events.

Every event describes it's changed to the state.

add

delete

edit

3 @Michael_Hladky

upsert

toggle

hide

halfen

delete

Event Sourcing

Instead of mutating the state,

derive (query) it from the
immutable sequence of changes

@Michael_Hladky

Command Query Responsibility
Segregation
(CQRS)

CQRS provides separation of concerns for reading and
writing.

@Michael_Hladky

66 CORS:
Every method should either be a

command, or a query),
but not both. 29

Bertrand Meyer (#& <!

CQRS

Separating an application
responsibilities into
two parts:

e The command side
witch update state

e The query side
which reads state

3 @Michael_Hladky

Responsibility Segregation

add

edit

@
0

Command

l
P

Query

CQRS

Enables a combination of
l.e:

e normalization
(faster writes)

e denormalization
(faster reads)

@Michael_Hladky

Responsibility Segregation

'
O

Command Query

CQRS

Let's apply it to the
frontend and by

separating writing and Write Read

reading strictly
Responsibility Segregation

'
O

Command Query

3y @Michael_Hladky

{1

Separate
State Management and Side Effects

@Michael_Hladky

Orchestrate Ul
interaction and rendering

@Michael_Hladky

Orchestrate rendering and Ul interaction

- First render
- Than interaction

@Michael_Hladky

Where and when
to optimize performance

@Michael_Hladky

Where and when to optimize performance

- Do it at the end of your task

- Before trigger a render side effect

- Use the AnimationFrameScheduler

- Sample frequent commands

- debounce typing

- Use standard operators to work with arrays

3 @Michael_Hladky

Thanks for your time

I’m Michael,
If you have any questions
just ping me!

G

Michael Hladky

